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Designing effective curricula is challenging. Content decisions can impact both
learning outcomes and student engagement. As an example consider the place of
Hardy-Weinberg equilibria (HWE) and genetic drift calculations in introductory
biology courses, as discussed by Masel (2012). Given that population genetics, “a
fairly arcane speciality”, can be difficult to grasp, there is little justification for
introducing introductory students to HWE calculations. It is more useful to
introduce them to the behavior of alleles in terms of basic features of
biological systems, and that in the absence of selection recessive alleles are no
“weaker” or preferentially lost from a population than are dominant alleles. On the
other hand, stochastic behaviors, such as genetic drift, are ubiquitous in biological
systems and often play functionally significant roles; they can be introduced to
introductory students in mechanistic and probabilistic terms. Specifically, genetic
drift emerges from the stochastic processes involved in meiotic chromosome
segregation and recombination. A focus on stochastic processes may help
counteract naive bio-deterministic thinking and can reinforce, for students, the
value of thinking quantitatively about biological processes.
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Introduction

One might suppose that college level biology degree programs are designed via an
intelligent (backward) design process (Wiggins and McTighe, 1998), shaped by a program’s
desired learning outcomes. Learning outcomes are presumed to prepare students for the
demands of post-graduate life and careers. Such a design process can be expected to
anticipate and address necessary challenges and to avoid unnecessary obstacles. The actual
curricular design process is, however, rarely so rational and goal oriented and often fails to
re-consider content covered in the light of new experimental insights. Calls for “active
learning” pedagogical strategies (Wieman, 2017; 2014) are often imposed on top of unaltered
course content and fail to acknowledge the challenges associated with more interactive and
discussion-oriented approaches. More broadly, a program’s learning goals are often only
broadly sketched out or assigned to be “covered” in specific courses.

An obvious question then is whether the courses addressing these topics lead to students
who understand their implications and application? In a number of cases related to
chemistry (Lewis Structures, H-bonds, Acid-Base, London-dispersion forces) direct
observations indicate that conventional curricula often fail to produce the kind of
student understanding presumed to have occurred (see as examples Becker et al., 2016;
Cooper et al., 2010; Cooper et al., 2016; Noyes and Cooper, 2019). In a classic example, a
conventional chemistry curriculum (taught in an “active learning” style) can leave students
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confused as to the differences between H-bonds and covalent bonds
involving hydrogen (Williams et al., 2015). Such confusions are
likely to impact understanding of more advanced topics that involve
chemical bonds andmolecular interactions. Recent analyses indicate
that conventional chemistry courses often focus more on
mathematical calculations than on chemistry’s conceptual
foundations (Stowe and Cooper, 2017; Stowe and Cooper, 2019;
Stowe et al., 2021; Ralph et al., 2022). In the context of an
introductory course, such a disconnect can suggest that the
purpose of the course is to sort rather than educate students (see
Mervis, 2011; Hatfield et al., 2022). Such a perception may impact
(non-privileged) students who may lack the “social capital” needed
to place the course in context (Israel et al., 2001; Rogošić and
Baranović, 2016).

In the biological sciences there is a tacit presumption that
students need courses in (macroscopic) physics, chemistry, and
mathematics to be able to understand the workings of biological
systems (see the National Research Council’s Bio2010 report (NRC,
2003) and Vision and Change (AAAS, 2011; Brownell et al., 2014)).
Not withstanding calls for integrating the mathematics needed to
model and analyze complex systems (Bialek and Botstein, 2004;
Wingreen and Botstein, 2006; Labov et al., 2010) it remains unclear
exactly which mathematical/analytic skills will be useful going
forward and how they might be best introduced to students. For
example, what background training is required to understand the
behavior of a gene network or make sense of the results of an analysis
of a multi-dimensional data set such as produced by single cell RNA
sequencing or genome-wide association studies? In the context of
such complex data sets are web-based tutorials on “Principle
Component Analysis for Dummies” (LINK) and “Making sense
of principal component analysis, eigenvectors & eigenvalues”
(LINK) sufficient, or is a more complete rethinking of course and
curricular content necessary and for whom? As outlined previously,
at minimum there needs to be an appreciation of how varying the
inputs into a model can lead to dramatic differences in system
behaviors (Klymkowsky, 2021).

Institutional factors influencing
introductory biology course design

While there is typically a single physics or chemistry
department, there can be multiple departments (or divisions)
related to biological systems. The result can be a lack of
consensus as to what exactly the introductory course sequence
should focus on. An obvious factor that influences curricular
design are the post-graduation employment and educational
paths that students aim to pursue. As an example course
requirements for biology degree programs are often influenced by
medical school entrance requirements and exams. One outcome is
the “survey” course, a course that touches, sometimes quite
superficially, on a wide range of complex topics. The value of
these courses has been discussed and recommendations made
(see Becker, 2005; Klymkowsky et al., 2016b; Ledbetter and
Campbell, 2005 as examples) but clearly the exact focus of such
courses depend upon the specific goals of the degree program
involved. In part the situation arises from the fact that biology
lacks the universally recognized “laws” that provide a foundation for

physics and chemistry (Mayr, 1985). Biological systems (cells,
organisms, populations, species) are emergent objects shaped by
unpredictable historical “accidents” and events; these include
mutations, environmental changes and catastrophes, migrations,
pathogens and predators, and events that lead to the reproductive
isolation of populations from one another, the basis for
speciation–the subject of Darwin’s (1859) “Origin of Species”.

While the diversity of life is clearly a critical aspect of biological
studies, there is a fundamental unity that underlies all biological
considerations. All existing evidence indicates that all known
organisms share a “last universal common ancestor” (LUCA).
The major molecular processes and cellular characteristics of
biological systems are conserved (albeit with modifications): basic
cell structure, the processes involved in capturing and encoding
information in DNA and then “expressing” that information
through regulated RNA and RNA-directed polypeptide synthesis,
together with core metabolic processes through which energy is
captured and used to drive the thermodynamically unfavorable
reactions involved in growth, adaptation, and the maintenance of
the non-equilibrium living state. This point was made by Gerhart
and Kirschner (1997) and reinforced by more recent observations,
on the small number of basic processes that underlie the
morphological and behavioral diversity of living systems. In this
light, focussing an introductory biology course sequence on these
common processes and principles would seem to make sense.

Do Hardy-Weinberg equilibrium (HWE)
calculations have a place in an
introductory biology (or genetics)
course?

Masel (2012) appears to hold that HWE calculations are an
essential component of introductory biology (and genetics) courses. A
perusal of various recent introductory biology/genetics textbooks (e.g.,
codon learning - link) include HWE calculations. There are a number
of published papers on how best to implement such calculations
within a course.1 As described by Masel, HWE calculations rely
heavily on mathematical concepts that may be poorly understood
by students, such as the concept of the null hypothesis and the use of
statistical tests to evaluate whether observations support the null
hypothesis. It therefore is worth considering 1) the assumptions
that HWE calculations are based on, 2) what general conclusions
arise from these calculations, at least at the introductory level, and 3)
when, going forward, will students be called upon to carry out such
calculations? The HWE framework rests on a number of unrealistic
assumptions leading to an equilibrium state; these assumptions are 1)
the absence of new mutations in the population, 2) the absence of
selection of all types, 3) random (non-selective) mating, 4) the absence
of migration between populations, and v) an infinitely large
population in which genetic drift does not occur.

“There is little point in teaching a biology concept before the
students have sufficient math to understand it. Masel (2012).

1 A partial list of such papers can be found in reviewer #1’s comments on the
first version of this manuscript.
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So, outside of the context of more advanced population genetic
studies, what can an introductory student conclude from HWE
calculations? The key take-away is that, in the absence of selection,
recessive mutations/alleles are no more likely to be lost from a
population than are dominant mutations/alleles. Recessive alleles
are not “weaker” than dominant alleles. As far as I can discern,
there is little or no observational evidence that this fact is widely
appreciated by students. This is relevant in the light of concept
inventory-based observations that students are confused as to the
behaviors of recessive and dominant alleles (Klymkowsky et al.,
2010; Champagne-Queloz et al., 2017). An alternative to HWE
calculations might be to follow a more historical approach, based
on the relationships between phenotype and selection (e.g., Sanjak
et al., 2018) and the work of H.J. Muller (2016; 1932) in which
alleles (and by implication mutations) are defined at the functional
and phenotypic level based on differences from “wild type” alleles
(see Henson et al., 2012). At the same time, this involves
recognizing that a particular allele can be recessive with regard
to one phenotypic trait and dominant for another. Alleles
associated with sickle cell anemia display this type of recessive
and dominant behavior.

Students are often assessed on their ability to carry out HWE
calculations rather than on their understanding of how allelic
variations can influence phenotype, something that is often
complex and that transcends the typical Mendelian framing of
genetics (see Klymkowsky, 2022 review of Haskel-Ittah and Yarden
Putting Genetics in Context). While the relevance of HWE
calculations to understanding the phenotypic effects of genetic
changes is not immediately clear, a focus on calculation for the
sake of calculation can favor those with previous mathematical
training, but may have no benefit in terms of improved conceptual
understanding (Stowe and Cooper, 2019; Ralph et al., 2022).

The origins of genetic drift and the
stochastic nature of biological systems

The molecular and cellular organization of biological systems leads
to stochastic behaviors that often go unconsidered in “conventional”
courses. For many stochasticity is a new term, often confused with
randomness, which is different, and noisiness, which is an aspect of
stochastic behaviors (for reviews see Allen, 2010; Bressloff, 2014;
Honegger and de Bivort, 2018). A truly random process would be
both unpredictable and display no overall pattern. From a strictly
naturalistic perspective, random events do not occur. A stochastic event,
such as the decay of a radioactive atom, while not predictable at the level
of the individual atom (the basis of Schrȍdinger’s cat thought
experiment), is lawful. Given a large enough population of atoms,
we can accurately predict the time at which 50% will have decayed.
Some will have decayed much earlier and some very much later. In
biological systems, stochasticity arises in large part from thermal
motion, which impacts the formation and dissociation of molecular
interactions and chemical reactions. Molecular collisions can deliver
and take away kinetic energy. The exact momentum of each molecule
cannot, however, be accurately and completely characterized without
perturbing the system.

The small size of most cells, and the fact that there are small
numbers of key molecules within them (for example, DNA) means

that stochastic processes play an important role in biological
behaviors and their regulation; stochastic changes in gene
expression can have profound effects on the future of the cell
(and the organism). The ubiquity of stochastic effects and
responses to these effects has been revealed most recently
through single cell gene expression and RNA sequencing
methods (e.g., Elowitz et al., 2002; Chess, 2016; Briggs et al.,
2018) and by following the behavior of cells whose behavior, in
terms of gene expression, has diverged from their neighbors
(community effects) (see as examples Di Gregorio et al., 2016;
Akieda et al., 2019; Morata, 2021).

Some confusions appear to exist within the biology education
community about the nature of stochastic processes. For example,
Price et al. (2014) describe a “misconception” uncovered in the
course of the construction of their “Genetic Drift Concept
Inventory”. They note that “students conflate randomness with
unpredictability”; they quote a student who stated, “because
genetic drift is random, you will not know when the genes will
drift until it is done, so you can’t predict it”. But this is no
misconception, it is exactly correct - the molecular events that
produce the genotype of a specific gamete and that lead to
genetic drift in small populations are not predictable. These
changes become increasingly predictable as population size
increases. This same rule applies to the chemotactic tumbling of
bacteria (Spudich and Koshland, 1976), the noisy opening of ion
channels (Neher and Sakmann, 1976), patterns of cell
differentiation, interactions, and activities in the immune (Abadie
et al., 2019) and nervous (Rolls and Deco, 2010; Rolls, 2016) systems,
and gene expression in general (Elowitz et al., 2002; Vilar et al., 2003;
Choi et al., 2008; Deng et al., 2014; Gendrel et al., 2014; Reinius and
Sandberg, 2015; Chess, 2016) and a range of other phenomena
(Honegger and de Bivort, 2018; You and Leu, 2020; Klymkowsky,
2023). While the behavior of (a large enough) population is
predictable, the behavior of any single actor is not. It is in this
context that various assessment instruments (Garvin-Doxas and
Klymkowsky, 2008; Klymkowsky et al., 2016a; Champagne-Queloz
et al., 2017; Tobler et al., 2023) can be useful in identifying when
students have learned to apply ideas appropriately.

Genetic drift, that is, non-adaptive changes in allele frequencies, is
called out by Masel (2012) as a key concept. In Masel’s view, genetic
drift arises from “accidents of sampling”, a framing intrinsic to
population biology and evolution studies. In common parlance,
sampling is something done to a pre-existing population, as occurs
in the context of founder and bottleneck effects. In these situations small
numbers of individuals are taken from a larger population and then
evolve independently. Sampling does not address the origins of the
allelic variation found within the population, which are due tomutation
and recombination, the raw material on which genetic drift acts. No
population is sampled to produce the variation in gametes and embryos.

During sexual reproduction each new organism is the product of
at least three distinct stochastic events.2 During the first phase of
meiosis, homologous maternal and paternal chromosomes align and
come to lie at the metaphase plate of the meiosis I spindle. With

2 For simplicity’s sake, I will consider only common variants of these
processes, even though there are often exceptions and species specific
variants.
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anaphase I, each daughter cell receives either a maternal or a paternal
copy of each chromosome, but which copy they receive is
unpredictable, and based on the stochastic orientation of maternal
and paternal chromosome kinetochores (Hauf and Watanabe, 2004).
The situation is further complicated by the occurrence of crossing over
(recombination) events that “shuffle” the maternal and paternal
regions of homologous chromosomes. The result is a series of
independent “coin-flip decisions” that determine the chromosomal
“identity” of the resulting cells. In humans, with 23 distinct
chromosomes, there are 223 possible outcomes without considering
the effects of recombination, which greatly increases the number of
possible outcomes.With the secondmeiotic division four haploid cells
are generated with two (out of >223 possible) distinct maternal/
paternal chromosome compositions. A similar process occurs in
the paternal germ line. Which female gamete fuses with which
male gamete to form a diploid embryo is again stochastic. The
result is that each new individual is unique, i.e., not predictable
based on the genotypes of its parents—assuming that we are not
dealing with the unnatural situation of fully inbred parents. By
considering the origins of the genetic variation among gametes
and embryos, students can be introduced to the impact of
stochastic processes in biological systems.

Conclusions and recommendations

The basic question is whether introducing students to isolated
aspects of population genetics and the mathematical analysis of
complex allelic behaviors arising from interactions between genes,
environments, and other organisms serves any purpose for the early
(introductory) stage student. Instead a focus on the core ideas involved,
the behaviors of alleles and the ubiquity of stochastic processes in
biological systems seems more appropriate and useful. Understanding
why stochastic “noise” occurs, and how it is utilized and controlled
provides a context within which to make sense of the, often
unpredictable variations in the behavior of organisms, including people.
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